Estimating the Confidence of Statistical Model Based Shape Prediction
نویسندگان
چکیده
We propose a method for estimating confidence regions around shapes predicted from partial observations, given a statistical shape model. Our method relies on the estimation of the distribution of the prediction error, obtained non-parametrically through a bootstrap resampling of a training set. It can thus be easily adapted to different shape prediction algorithms. Individual confidence regions for each landmark are then derived, assuming a Gaussian distribution. Merging those individual confidence regions, we establish th probability that, on average, a given proportion of the predicted landmarks actually lie in their estimated regions. We also propose a method for validating the accuracy of these regions using a test set.
منابع مشابه
Propagating uncertainties in statistical model based shape prediction
This paper addresses the question of accuracy assessment and confidence regions estimation in statistical model based shape prediction. Shape prediction consists in estimating the shape of an organ based on a partial observation, due e.g. to a limited field of view or poorly contrasted images, and generally requires a statistical model. However, such predictions can be impaired by several sourc...
متن کاملModel Confidence Set Based on Kullback-Leibler Divergence Distance
Consider the problem of estimating true density, h(.) based upon a random sample X1,…, Xn. In general, h(.)is approximated using an appropriate in some sense, see below) model fƟ(x). This article using Vuong's (1989) test along with a collection of k(> 2) non-nested models constructs a set of appropriate models, say model confidence set, for unknown model h(.).Application of such confide...
متن کاملStatistical analysis of SHAPE-directed RNA secondary structure modeling.
The ability to predict RNA secondary structure is fundamental for understanding and manipulating RNA function. The information obtained from selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) experiments greatly improves the accuracy of RNA secondary structure prediction. Recently, Das and colleagues [Kladwang, W., et al. (2011) Biochemistry 50, 8049-8056] proposed a "bootstra...
متن کاملInference for the Type-II Generalized Logistic Distribution with Progressive Hybrid Censoring
This article presents the analysis of the Type-II hybrid progressively censored data when the lifetime distributions of the items follow Type-II generalized logistic distribution. Maximum likelihood estimators (MLEs) are investigated for estimating the location and scale parameters. It is observed that the MLEs can not be obtained in explicit forms. We provide the approximate maximum likelihood...
متن کاملStatistical Problems in Ocean Modeling and Prediction
My project addresses statistical problems in the following fields: Lagrangian prediction and Lagrangian data assimilation (1), estimating transport and mixing parameters from tracer observations (2), and ocean model validation (3). The long range scientific goals of this study comprise determining limits of predictability for Lagrangian motion in semi-enclosed seas and littoral zones on time sc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Information processing in medical imaging : proceedings of the ... conference
دوره 21 شماره
صفحات -
تاریخ انتشار 2009